ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration ARGE – The European Federation of Locks and Building Hardware Manufacturers

Publisher Institut Bauen und Umwelt e.V. (IBU)

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-ARG-20230543-IBG1-EN

Issue date 02.04.2024 Valid to 01.04.2029

Panic and emergency exit devices

ARGE – The European Federation of Locks and Building Hardware Manufacturers

This EPD is valid only for products supplied by an ARGE EPD licence holder.

www.ibu-epd.com | https://epd-online.com

1. General Information

ARGE – The European Federation of Locks Panic and emergency exit devices and Building Hardware Manufacturers Programme holder Owner of the declaration IBU - Institut Bauen und Umwelt e.V. ARGE - The European Federation of Locks and Building Hardware Hegelplatz 1 Manufacturers 10117 Berlin Offerstraße 12 42551 Velbert Germany Germany **Declaration number** Declared product / declared unit EPD-ARG-20230543-IBG1-EN 1 kg of panic or emergency exit device This declaration is based on the product category rules: Scope: Building Hardware products, 01.08.2021 This ARGE EPD covers panic and emergency exit devices used to enable (PCR checked and approved by the SVR) rapid and easy egress from buildings. The reference product used to calculate the impact this product group has on the environment is a panic exit device composed primarily of steel, Zamak and aluminium, and has been selected for the LCA (Life Cycle Assessment) because it is the Issue date product with the highest impact for 1 kg of product. A validity scope 02.04.2024 analysis has also been carried out to determine the limiting factors for panic and emergency exit devices covered by this EPD. In a preliminary study (simplified LCA), it has been confirmed that this EPD represents the Valid to worst-case condition and it can therefore be used to cover all panic and 01.04.2029 emergency exit devices devices manufactured in Europe by ARGE member companies. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as EN 15804. Verification The standard EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO Dipl.-Ing. Hans Peters 14025:2011 (Chairman of Institut Bauen und Umwelt e.V.) Χ internally externally

Florian Pronold

(Managing Director Institut Bauen und Umwelt e.V.)

Dr. Matthew Fishwick, (Independent verifier)

llum

2. Product

2.1 Product description/Product definition

This ARGE EPD covers panic and emergency exit devices used to allow rapid and easy egress from buildings. For the placing on the market of the product in the European Union/European Free Trade Association (EU/EFTA) (with the exception of Switzerland) *Regulation (EU) No. 305/2011 (CPR)* applies. The product needs a declaration of performance taking into consideration:

- EN 1125:2008, Building hardware Panic exit devices operated by a horizontal bar, for use on escape routes — Requirements and test methods.
- EN 179:2008, Building hardware Emergency exit devices operated by a lever handle or push pad, for use on escape routes – Requirements and test methods.

and the CE-marking.

For the application and use the respective national provisions apply.

2.2 Application

These products are designed to be integrated into door assemblies consisting of various materials and used for various applications. They may be used for either interior or exterior doors.

2.3 Technical Data

Ideally, products should comply with a suitable technical specification. *EN 1125* and *EN 179* are examples of such specifications and some products will comply with one of these standards. The relevant grading structure is shown in the following table:

Name	Value	Unit
Category of use	3	Grade
Durability	6, 7	Grade
Door mass	5, 6, 7	Grade
Suitability for use in fire resisting and/or smoke control doors	0, A, B	Grade
Safety	1	Grade
Corrosion resistance	3, 4	Grade
Security	2 - 5	Grade
Projection of operating element	1, 2	Grade
Type of operation	A, B	Grade
Field of door application	A, B, C, D	Grade

Performance data of the product in accordance with the declaration of performance with respect to its essential characteristics according to:

- EN 1125:2008, Building hardware Panic exit devices operated by a horizontal bar, for use on escape routes Requirements and test methods
- EN 179:2008, Building hardware Emergency exit devices operated by a lever handle or push pad, for use on escape routes - Requirements and test methods

2.4 Delivery status

The products are sold by unit. Deliveries of individual items are possible but are an exception. Standard deliveries comprise a larger quantity of of panic or emergency exit devices, as they are marketed as "B2B" products and not to end-users.

2.5 Base materials/Ancillary materials Composition of product analysed for this EPD:

The values are given in the table below are for the product analysed for this EPD. Ranges of values for other products covered by the validity scope analysis are shown in brackets

Name	Value	Unit
Steel (36.81% – 77.01%)	36.81	%
Zamak (0.00% – 34.03%)	34.03	%
Aluminium (22.03% – 25.86%)	25.86	%
ABS (0.00% – 1.77%)	1.77	%
Nylon 6 (0.00% – 1.53%)	1.53	%
PVC (0.00% – 0.08%)	0	%
Brass (0.00% - 0.88%)	0	%

Steel is produced by combining iron with carbon as well as other elements depending on the desired characteristics. Components made of steel are formed by turning or other types of mechanical processing.

Zamak is an alloy with a base metal of zinc and alloying elements of aluminium, magnesium, and copper. Components made of Zamak are die-cast.

Aluminium is a non-ferrous metal produced from bauxite by the Bayer process. Components made of aluminium are manufactured by die-casting or other types of mechanical processing.

ABS (acrylonitrile butadiene styrene) is a terpolymer polymer made by polymerizing styrene and acrylonitrile in the presence of polybutadiene. Components made of ABS are made by injection moulding or other thermal forming processes.

Nylon 6 is a polymer, in particular polyamide. It is formed by the ring-opening polymerisation of caprolactam. Components made of Nylon 6 are formed by injection moulding or other thermal forming processes.

PVC (polyvinyl chloride) is a thermoplastic polymer produced via polymerisation of vinyl chloride. Components made of PVC are formed by injection moulding or other thermal forming processes.

Brass is an alloy of zinc and copper. Components made of brass are made by extrusion, forging, die-casting or other types of mechanical processing.

- 1) This product/article/at least one partial article contains substances listed in the *ECHA candidate list* (date: 14.06.2023) exceeding 0.1 percentage by mass: Certain components may contain small amounts of lead (CAS no. 7439-92-1) as an alloying element.
- 2) This product/article/at least one partial article contains other cancerogenic, mutagenic, reprotoxic (CMR) substances in categories 1A or 1B which are not on the *ECHA candidate list*, exceeding 0.1 percentage by mass: no.
- 3) Biocide products were added to this construction product or it has been treated with biocide products (this then concerns a treated product as defined by the (EU) *Ordinance on Biocide Products No. 528/2012*): no.

2.6 Manufacture

The production of a panic and an emergency exit device usually follows a 3-step procedure:

- Manufacture of the components: this step may include surface treatment in the factory or by external contractors.
- 2. Pre-assembly of modules (in the factory).
- 3. Final assembly (in the factory).

2.7 Environment and health during manufacturing

Regular measurements of air quality and noise levels are carried out by the manufacturers, the ARGE member companies. The results shall be within the mandatory safety levels. In areas where employees are exposed to chemical products, the required protective clothing and technical protective devices shall be provided. Regular health checks are mandatory for employees in production facilities.

2.8 Product processing/Installation

The installation of the product may vary depending on the type of door and the specific situation, but the products shall not require energy consumption for installation.

2.9 Packaging

Normally, each individual product is packed in paper or cardboard. These individual products are then packed in a cardboard box and stacked on wooden pallets for transport to the customer.

Waste from product packaging is collected separately for waste disposal (including recycling).

2.10 Condition of use

Once installed, the products shall require no servicing during their expected service lives. There shall be no consumption of water or energy linked to their use, and they shall not cause any emissions.

2.11 Environment and health during use

No environmental damage or health risks are to be expected during normal conditions of use.

2.12 Reference service life

The reference service life is 30 years under normal working conditions. This corresponds to passing a mechanical endurance test of 200.000 cycles as specified in *EN 1125* and *EN 179*. The reference service life is dependent on the actual frequency of use and environmental conditions. It is required that installation, as well as maintenance of the product, must be done in line with instructions provided by the manufacturer.

2.13 Extraordinary effects

Fire

In general, both types of products are suitable for use in fire resisting and/or smoke control door sets according to the classes in *EN 1125 and EN 179*, unless the product is classified in class/grade 0.

Water

The declared product is intended to be used in buildings under normal conditions (indoor or outdoor) They shall not emit hazardous substances in the event of flooding.

Mechanical destruction

Mechanical destruction of the declared product shall not materially alter its composition or have any adverse effect on the environment.

2.14 Re-use phase

Removal of the panic or emergency device (for re-use or recycling) shall have no adverse effect on the environment.

2.15 Disposal

Components of panic and emergency exit devices should be recycled wherever possible, providing that there is no adverse effect on the environment. The waste code in accordance with the *European Waste Code* is 17 04 07.

2.16 Further information

Details of all types and variants can be found on the manufacturers' websites. The respective website addresses are available at https://arge.org.

3. LCA: Calculation rules

3.1 Declared Unit

The declared unit for all products covered by this ARGE EPD is 1 kg (of product). Since individual products will rarely weigh exactly 1 kg it is necessary to establish the exact weight of the product and then use this as a correction factor to determine the true values for 1 kg of product in the tables (Section 5).

Declared unit

Name	Value	Unit
Declared unit	1	kg
Mass of declared product	1.95	kg
Raw density	1	kg/m ³

3.2 System boundary

Type of the EPD: "cradle to gate with options, with modules C1 – C4, and module D (A1-A3, C1-C3, D and additional modules)"

The analysis of the product life cycle includes the production and transport of the raw materials, the manufacture of the product and the packaging materials which are declared in modules A1-A3.

Losses during production are considered as waste and are sent for recycling. No recycling processes are taken into account except for transport and electricity consumption for grinding the metals. When recycled metals are used as raw material only their transformation process is taken into account and not the extraction of the raw material.

A4 module represents the transport of the finished panic exit device to the installation site.

There is no waste associated with the installation of the product. The A5 module therefore represents only the disposal of the product packaging.

The End-of-Life (EoL) stages are also considered. The transportation to the EoL disposal site is taken into account in module C2. Module C4 covers the disposal of the locks. Module C3 covers the recycling of the individual elements according to European averages, with the remaining waste divided between incineration and landfill. Such a mixed scenario is declared due to the complex material mix of the product and the dependency of the EoL-route on the EoL-route of the product the panic exit device has been integrated into.

In practice, the end of life has been modelled as follows:

- when a material is sent for recycling, generic transport and electric consumption of a shredder is taken into account (corresponding to the process 'Grinding, metals'). Only then, is the material considered to have attained the 'end-of-waste' state.
- each type of waste is modelled as a transport to the treatment site with a distance of 30 km. Parts sent for

recycling include electricity consumption (grinding) and a flow ('Materials for recycling, unspecified').

3.3 Estimates and assumptions

The LCA data of the declared panic exit device have been calculated from the production data of one ARGE member company, representing 2 different kinds of product. This company was chosen by ARGE as being representative by means of its production process and its market share. The product chosen as representative for this calculation follows the "worst-case" principle as explained in section 6. LCA interpretation.

3.4 Cut-off criteria

The cut-off criteria considered are 1% of renewable and nonrenewable primary energy usage and 1% of the total mass of that unit process. The total neglected input flows per module shall be a maximum of 5% of energy usage and mass.

For this study, all input and output flows have been considered at 100%, including raw materials as per the product composition provided by the manufacturer and packaging of raw materials as well as the final product. Energy and water consumptions have also been considered at 100% according to the data provided.

With the approach chosen, no significant environmental impacts are known to have been cut off.

3.5 Background data

For the life cycle modelling of the considered product, all relevant background datasets are taken from *ecoinvent v3.8* (system model: cut-off by classification).

3.6 Data quality

The objective of this evaluation is to evaluate the environmental impacts generated by the products throughout their entire life cycles. To this end, *ISO 14040*, *ISO 14044* and *EN 15804* have been met regarding the quality of data on the following different criteria:

Time: The life cycle inventory data used come from:

 Data collected specifically for this study on the ARGE member companies' manufacturing sites. Datasets are based on 1-year averaged data (time period: January 2013 to December 2013 considered representative for 2022). In the absence of collected data, generic data from the ecoinvent v3.8 database have been used. This is updated regularly and is representative of current processes (the entire database having been updated in 2021).

Geography: Data come from production sites of the ARGE member companies. Generic data come from the *ecoinvent* database, representative for European production processes.

Technology: Material shaping technologies are based on European technology in the case of the use of generic data.

A total of 2 typical products (based on sales figures) have been evaluated, and the worst-case results are used in the tables.

3.7 Period under review

The data of the LCA is based on the annual production data of an ARGE member from 2013, considered representative for the year 2022.

3.8 Geographic Representativeness

Land or region, in which the declared product system is manufactured, used or handled at the end of the product's lifespan: Europe

3.9 Allocation

The products covered by this EPD are produced on one production site. All data were provided by the manufacturer of the products per unit and then divided by the mass of the product to give a value per kg of product produced.

The assumptions relating to the EoL of the product are described in the section System Boundaries.

Metal losses during production (stage A3) are considered as waste.

3.10 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account.

ecoinvent v3.8 (system model: cut-off by classification) has been used as the background database.

4. LCA: Scenarios and additional technical information

Characteristic product properties of biogenic carbon

Information on the biogenic carbon content at factory gate Note: 1 kg of biogenic carbon is equivalent to 44/12 kg of CO₂.

Name	Value	Unit
Biogenic carbon content in product	0	kg C
Biogenic carbon content in accompanying packaging	0.0570	kg C

The following information is the basis of the declared modules within the LCA in this EPD.

Transport to the building site (A4)

Name	Value	Unit
Litres of fuel	25.8	I/100km
Transport distance	3500	km
Capacity utilisation (including empty runs)	36	%

Installation into the building (A5)

Name	Value	Unit
Material loss	0.144	kg

Reference service life

Name	Value	Unit
Reference service life (condition of use: see §2.13)	30	а
Test cycles over RSL (EN 1125, EN 179)	200'000	cycles

End of life (C1-C4)

Name	Value	Unit
Collected separately waste type	1	kg
Recycling	0.475	kg
Energy recovery	0.242	kg
Landfilling	0.284	kg

It is assumed that a 16–32-ton truck is used to transport the product:

- Transport to shredding facility for metal recovery: 150 km
- Transport to municipal waste incineration plant: 50 km
- Transport to landfill: 30 km

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Module D contains the benefits and loads beyond the system boundary related to the recycling of metals, which result from the treatment of recycled materials from the point of end-of-waste status to the point of substitution (as costs) and the substitution of primary resources (as benefits).

According to *EN 16710*, clause 6.4.3.3: 'In module D substitution effects are calculated only for the resulting net

output flow.

For building hardware, the following rules apply for the quantification of net output flows:

- all production scrap and cuttings leave modules A1-B3 as sorted scrap without allocated burdens from primary production; the corresponding amounts are declared as material for recycling (MFR);
- net amounts of a metal leaving the product system are quantified as the material for recycling leaving modules A1-C4 minus the input of secondary scrap (secondary material, SM) to the product system:
- in the case of brass and zinc alloys, which are composed of two different constituting metals, no difference shall be made between the input of secondary constituting metals (Cu and Zn; Cu and Sn) and its alloys (CuZn; CuSn).

Negative net output flows have not been considered in the quantification of module D.

It also includes the benefits and loads related to 'exported energy electricity' and 'expo rtedenergy heat' resulting from the energy recovery from plastic wastes in a municipal waste incineration plant as modelled in Modules A3, A5 and C4.

5. LCA: Results

In Table 1 "Description of the system boundary", the declared modules are indicated with an "X"; all modules that are not declared within the EPD but where additional data are available are indicated with "MND". Those data can also be used for building assessment scenarios. The values are declared with three valid digits in exponential form.

The set of characterisation factors EF3.0 has been used for the life cycle assessment.

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE OR INDICATOR NOT DECLARED; MNR = MODULE NOT RELEVANT)

Product stage			Constr	ruction s stage		Use stage					[End of li	ife stage)	Benefits and loads beyond the system boundaries	
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A 1	A2	А3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
X	Х	Х	Х	Х	MND	MND	MNR	MNR	MNR	MND	MND	Х	Х	Х	Х	X

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 kg of emergency exit and panic exit devices

ALSOLIO OF THE LOA - ENVINCENTIAL INIT ACT according to EN 10004 - AL. They of chicig								na pamo ox	ar dovidoo
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
GWP-total	kg CO₂ eq	3.24E+01	6.52E-01	2.32E-01	0	1.64E-02	3.63E-03	3.66E-02	-2.5E+00
GWP-fossil	kg CO ₂ eq	3.25E+01	6.52E-01	2.33E-02	0	1.64E-02	3.62E-03	3.66E-02	-2.49E+00
GWP-biogenic	kg CO2 eq	-2.09E-01	0	2.09E-01	0	0	0	0	0
GWP-luluc	kg CO2 eq	5.21E-02	2.61E-04	1.24E-06	0	6.55E-06	9.04E-06	3.38E-06	-6.56E-03
ODP	kg CFC11 eq	2.04E-06	1.51E-07	6.91E-10	0	3.79E-09	1.84E-10	1.32E-09	-9.19E-08
AP	mol H ⁺ eq	1.65E-01	1.85E-03	1.72E-05	0	4.65E-05	1.87E-05	3.75E-05	-1.78E-02
EP-freshwater	kg P eq	1.66E-03	4.65E-06	2.96E-08	0	1.17E-07	4.07E-07	7.72E-08	-1.14E-04
EP-marine	kg N eq	3.59E-02	3.68E-04	6.11E-06	0	9.24E-06	2.39E-06	1.45E-05	-2.46E-03
EP-terrestrial	mol N eq	2.99E-01	4.1E-03	6.6E-05	0	1.03E-04	2.77E-05	1.49E-04	-2.77E-02
POCP	kg NMVOC eq	1.5E-01	1.58E-03	1.85E-05	0	3.96E-05	7.57E-06	4.35E-05	-9.3E-03
ADPE	kg Sb eq	8.01E-04	2.31E-06	1.14E-08	0	5.8E-08	8.78E-09	1.96E-08	-2.94E-04
ADPF	MJ	4.22E+02	9.89E+00	4.76E-02	0	2.48E-01	7.68E-02	9.2E-02	-2.36E+01
WDP	m ³ world eq deprived	1.12E+01	3.01E-02	3E-04	0	7.56E-04	8.58E-04	-6.46E-04	-4.62E-01

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential)

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 kg of emergency exit and panic exit devices

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
PERE	MJ	3.92E+01	1.39E-01	-7.08E-01	0	3.49E-03	1.46E-02	5.03E-03	-2.81E+00
PERM	MJ	1.78E+00	0	-2.15E-01	0	0	0	0	0
PERT	MJ	4.1E+01	1.39E-01	-9.23E-01	0	3.49E-03	1.46E-02	5.03E-03	-2.81E+00
PENRE	MJ	4.22E+02	9.89E+00	3.38E-01	0	2.48E-01	7.75E-02	5.63E-01	-2.36E+01
PENRM	MJ	1.31E+00	0	-2.9E-01	0	0	0	-4.71E-01	0
PENRT	MJ	4.23E+02	9.89E+00	4.76E-02	0	2.48E-01	7.75E-02	9.2E-02	-2.36E+01
SM	kg	3.27E-01	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0
FW	m ³	3.5E-01	1.05E-03	5.19E-05	0	2.63E-05	4.95E-05	1.99E-04	-1.79E-02

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 kg of emergency exit and panic exit devices

Parameter	Unit	A1-A3	A 4	A5	C1	C2	C3	C4	D
HWD	kg	2.71E-02	2.58E-05	2.15E-07	0	6.48E-07	2.72E-08	1.74E-07	6.97E-05
NHWD	kg	6.52E+00	5.2E-01	3.19E-03	0	1.31E-02	2.89E-04	3.33E-01	-6.69E-01
RWD	kg	2.1E-03	1.43E-04	6.17E-07	0	3.59E-06	1.03E-06	1.16E-06	-6.53E-05
CRU	kg	0	0	0	0	0	0	0	0
MFR	kg	3.54E-01	0	9.3E-02	0	0	5.43E-01	0	0

MER	kg	0	0	0	0	0	0	0	0
EEE	MJ	0	0	3.71E-02	0	0	0	2E-02	0
EET	MJ	0	0	2.45E-01	0	0	0	1.32E-01	0

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional: 1 kg of emergency exit and panic exit devices

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
РМ	Disease incidence	1.46E-06	5.24E-08	3E-10	0	1.32E-09	4.99E-11	9.14E-10	-1.8E-07
IR	kBq U235 eq	1.43E+00	4.29E-02	1.88E-04	0	1.08E-03	7E-04	4.06E-04	-2.77E-02
ETP-fw	CTUe	8.64E+02	7.76E+00	4.49E-02	0	1.95E-01	3.86E-02	3.73E+01	-1.12E+02
HTP-c	CTUh	3.32E-08	2.5E-10	3.37E-12	0	6.27E-12	1.03E-12	1.5E-11	-2.7E-09
HTP-nc	CTUh	8.77E-07	7.84E-09	1.37E-10	0	1.97E-10	3.35E-11	1.64E-10	-9.92E-08
SQP	SQP	1.05E+02	6.89E+00	3.03E-02	0	1.73E-01	1.18E-02	1.56E-01	-7.73E+00

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index

Disclaimer 1 – for the indicator 'Potential Human exposure efficiency relative to U235'. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure or radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – for the indicators 'abiotic depletion potential for non-fossil resources', 'abiotic depletion potential for fossil resources', 'water (user) deprivation potential, deprivation-weighted water consumption', 'potential comparative toxic unit for ecosystems', 'potential comparative toxic unit for humans – cancerogenic', 'Potential comparative toxic unit for humans – not cancerogenic', 'potential soil quality index'. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high as there is limited experience with the indicator.

6. LCA: Interpretation

Figure 1 illustrates the relative contributions of the different modules along the life cycle of the declared products.

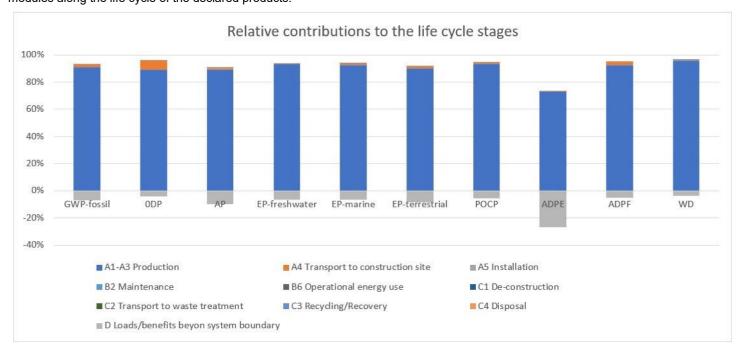


Figure 1: Environmental impacts of panic and emergency exit devices along its life cycle

The largest part of environmental impacts is caused during production (modules A1-A3); comparably small impacts are caused during the transport of the product to the construction site (via the manufacturer of the product, which the panic exit device has been integrated into).

All the other modules related to the product life cycle are not

significant.

Benefits and burdens beyond the system boundary (module D) are in the order of 5 % to 25% of the impacts over the product life cycle (modules A1-A3) and relate basically to the recycling of metals.

A total of 2 typical products (based on sales figures) have been evaluated and the worst-case results are used in section 5 of this EPD. In chapter 2.5, the tabulated range of relative weight per material ensures that the variability of results stays within

+/- 40% of the declared values (assessed for the indicators

GWP, PENRT, and non-hazardous waste).

7. Requisite evidence

No testing results are required by the PCR part B.

8. References

Product category rules of IBU

IBU (2021)

IBU (2021): General Instructions for the EPD Programme of the Institut Bauen und Umwelt e.V. (General Instructions for the IBU EPD Programme). Version 2.0, Institut Bauen und Umwelt, Berlin.

IBU (2021)

IBU (2021): PCR Part A: Calculation rules for the life cycle assessment and requirements on the project report according to EN 15804+A2. Version 1.3., Institut Bauen und Umwelt, Berlin.

IBU (2023)

IBU (2023): PCR Part B: Requirements on the EPD for building hardware products, Institut Bauen und Umwelt, Berlin.

Standards and legal documents

EN 15804

EN 15804:2012+A2:2019+AC:2021, Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products.

EN 17610

EN 17610:2022, Building hardware - Environmental product declarations - Product category rules complementary to EN 15804 for building hardware.

ISO 14025

ISO 14025:2006-07, Environmental labels and declarations - Type III Environmental declarations - Principles and procedures.

ISO 14044

EN ISO 14044:2006-07, Environmental management - Life cycle assessment - Requirements and guidance (ISO 14044:2006); German and English versions EN ISO 14044:2006.

EN 1125

EN 1125:2008, Building hardware - Panic exit devices operated by a horizontal bar, for use on escape routes - Requirements and test methods.

EN 179

EN 179:2008, Building hardware - Emergency exit devices

operated by a lever handle or push pad, for use on escape routes - Requirements and test methods.

EN 13501-1

EN 13501-1:2018, Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests.

ISO 15686

ISO 15686:1, -2, -7 and -8. Service life planning (various parts).

Regulation No. 305/2011

Regulation No. 305/2011 (Construction Products Regulation, or CPR) of the European Parliament and of the European Council is a regulation of 9 March 2011 that lays down harmonised conditions for the marketing of construction products and replaces Construction Products Directive (89/106/EEC).

ECHA candidate list

Candidate List of substances of very high concern for Authorisation, published in accordance with Article 59(10) of the REACH Regulation. European Chemicals Agency, Brussels.

Ordinance on Biocide Products No. 528/2012

REGULATION (EU) No 528/2012 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 22 May 2012 concerning the making available on the market and use of biocidal products.

European List of Waste

Commission Decision of 3 May 2000 replacing Decision 94/3/EC establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste (notified under document number C(2000) 1147).

Additional references

BBSR 2017

BBSR (2017): Nutzungsdauer von Bauteilen in Lebenszyklusanalysen nach Bewertungssystem Nachhaltiges Bauen (BNB). Version vom 24.10.2017, Bundesinstitut für Bau-, Stadt- und Raumforschung, Berlin.

ecoinvent v3.8

http://www.ecoinvent.org

Publisher

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Dr. Frank Werner Umwelt & Entwicklung

Author of the Life Cycle Assessment

Dr. Frank Werner - Umwelt & Entwicklung Kammelenbergstrasse 30 9011 St. Gallen Switzerland + 41 (0)44 241 39 06 frank@frankwerner.ch http://www.frankwerner.ch/

Owner of the Declaration

ARGE – The European Federation of Locks and Building Hardware Manufacturers Offerstraße 12 42551 Velbert Germany +49 (0)2051 9506 15 mail@arge.org www.arge.org